期刊专题 | 加入收藏 | 设为首页 12年实力经营,12年信誉保证!论文发表行业第一!就在400期刊网!

全国免费客服电话:
当前位置:首页 > 免费论文 > 社科历史 > 人文科学 >

退火温度对超细晶钢力学性能的影响

随着汽车工业的飞速发展,安全、能耗和环境问题越来越受到各国的关注。为了节约能源并且减少汽车尾气排放,先进高强度汽车用钢的开发是主要研究方向[1]。近年来,美国科罗拉多矿校JohnSpeer教授提出了一种新型热处理—Q&P工艺[2-5],成为高强度汽车用钢研究的热点。该工艺通过先奥氏体化退火再淬火至Ms~Mf温度得到一定量的马氏体和残留奥氏体,再在稍高于Ms温度控制C元素从马氏体向残留奥氏体配分,最后淬火得到富集C的残留奥氏体和马氏体的复相组织。由于残留奥氏体的相变诱发塑性(TRIP)效应故Q&P钢具有良好的综合力学性能。Q&P工艺的关键是通过设计合理的成分、制定合理的退火工艺来获得一定量并且具有合适稳定性的残留奥氏体[6]。Q&P工艺按退火温度分有完全奥氏体化Q&P工艺和两相区Q&P工艺,前者室温组织为残留奥氏体+马氏体,后者为铁素体+残留奥氏体+马氏体。本实验通过两相区Q&P退火工艺,在传统Q&P钢成分基础上添加适量Nb和Ni来提高其力学性能。Nb具有细化晶粒的作用[7],而Ni是强烈的稳定奥氏体元素[8],并且Mn钢热轧板室温组织马氏体含量较多,冷轧易出现边裂现象,另外Ni的固溶强化比Mn低,冷轧容易进行,同时添加Ni能改善钢的耐蚀性,故采用少量Ni取代部分Mn。本文模拟连续退火工艺对实验钢在不同退火温度下的显微组织和力学性能进行了对比和研究。

1实验材料与方法

实验用钢采用50kg真空感应炉熔炼,化学成分如表1所示。采用Thermo-Calc软件进行热力学计算实验钢的相变点,其Ac1、Ac3、Ms点温度分别为650、726和170℃。实验钢浇铸成锭并锻造成100mm×60mm×40mm的锻坯,锻坯经1200℃保温1h后热轧,开轧温度1150℃,经五道次轧制,终轧温度为870℃,卷取温度为660℃。热轧板经酸洗除磷后冷轧,冷轧压下率为50%,得到厚度为1.5mm的冷轧板。Q&P热处理工艺示意图如图1所示。先将实验钢在两相区奥氏体化退火,然后淬火至160℃,接着在400℃进行配分处理,最后淬火至室温。连续退火工艺在ULVACCCT-AY-Ⅱ型板材退火模拟试验机上进行,退火温度分别为650、670、690和710℃。根据国标GB/T228.1-2010,将热处理后的钢加工成50mm标距的标准拉伸试样,并在室温下进行拉伸试验,对每种状态的拉伸试样进行两次拉伸测试,性能指标取其平均值。退火后钢板的金相试样经机械抛光和4%硝酸酒精侵蚀后,在ZEISSAX10光学显微镜(OM)和QuantaFEG450热场发射环境扫描电镜(SEM)下观察其显微组织形貌和各相的形态分布。EBSD技术用于决定残留奥氏体相分布,高分辨率EBSD图片在步长为50nm放大倍数为10000×条件下获得,并用HKLChannel5软件进行数据处理。

2实验结果及讨论

2.1退火温度对组织的影响

实验钢经两相区Q&P工艺之后的显微组织如图2所示。其显微组织由块状铁素体+残留奥氏体/马氏体混合组织组成。其中,白色组织为铁素体,深色组织为块状残留奥氏体/马氏体。从图中可以看出,晶粒尺寸达到了亚微米级别,光学显微镜的分辨尺度下很难辨认组织的细节与状态。随着退火温度的升高,白色区域逐渐减少,深色区域逐渐增多。图3为实验钢Q&P处理后的SEM照片。经历两相区退火后,从图中可以看出,深色块状下凹区域为铁素体,细小的碳化物弥散分布在铁素体基体上,白色块状为马氏体或残留奥氏体。在650℃退火时,由于刚到Ac1温度,马氏体/残留奥氏体组织很少,组织中存在大块的冷轧变形的未再结晶区和弥散的未溶碳化物颗粒;高于Ac1退火时,随退火温度升高,未再结晶区和碳化物逐渐减少,马氏体/残留奥氏体逐渐增加。当退火温度为670℃时,形变基体的再结晶程度增加,同时有块状马氏体/残留奥氏体组织增多,说明退火温度已经处于两相区的温度范围;当退火温度为690℃时,超细化的马氏体/残留奥氏体弥散的分布在基本再结晶的基体上,同时未溶解的渗碳体已经很少;当实验钢在710℃退火时,基体中基本不存在碳化物。

2.2退火温度对力学性能的影响

图4为不同退火温度下实验钢工程应力应变曲线。实验钢在弹性变形结束后,出现了不同的加工硬化现象,当退火温度为650℃以及670℃时,实验钢拉伸曲线的塑性变形阶段呈现出双曲的特征,即曲线在塑性变形的初期即开始出现局部变形,拉伸曲线逐渐下降,随后又产生一定的加工硬化,拉伸曲线逐渐上升,直至断裂;当退火温度为690℃时,应力应变曲线出现了吕德斯类型台阶,这与局部应变有关,应变局部存在于狭窄的变形带中[11],当应变约为0.09时,由于应变积累到一定程度,残留奥氏体发生马氏体转变产生加工硬化出现了第一个台阶,当应变积累达到约0.23时,实验钢发生失稳断裂。当退火温度达到710℃时,出现了明显的加工硬化现象,这主要是因为710℃时钢中残留奥氏体含量较多,残留奥氏体相变产生TRIP增塑效应的结果,之后应力应变曲线呈锯齿状,这称为PLC效应,直至失稳断裂。退火温度为650、670和690℃时,随温度升高,断后伸长率逐渐升高,抗拉强度和屈服强度逐渐降低,这是因为随退火温度升高铁素体回复再结晶程度增大,且渗碳体逐渐减少。图5不同退火温度Q&P钢的力学性能Fig.5MechanicalpropertiesofthesteeltreatedbyQ&Pprocessatdifferentannealingtemperatures图5是实验钢不同退火温度条件下力学性能对比。从图看出,随退火温度升高,抗拉强度有下降的趋势,但变化幅度不大,而断后伸长率呈现先上升后下降的趋势,且在690℃达到最大,峰值为23.5%。由图中可知,退火温度为690℃时,强度和塑性达到最佳结合,强塑积最大,达到28GPa•%。

2.3残留奥氏体的XRD测量结果

采用X射线衍射技术对不同退火温度处理后样品中残留奥氏体含量进行了测定。不同温度下的XRD谱如图6所示。由图中可见,退火温度为650℃时,几乎没有残留奥氏体峰,随退火温度升高,残留奥氏体相对衍射强度逐渐增大且(200)γ和(211)γ峰基本以相同比例增加而铁素体峰却逐渐较弱。这主要是因为退火温度升高,两相区得到的残余奥氏体增多,在随后的淬火和配分中,C配分稳定的奥氏体含量大于奥氏体分解或相变的量。留奥氏体体积分数逐渐升高。退火温度为650℃时,奥氏体中碳含量最大,这主要是因为此时残留奥氏体含量较少,因此TRIP效应不明显导致塑性较差,说明此时残留奥氏体体积分数是影响塑性的主要因素。退火温度在650℃以上时,残留奥氏体碳含量先升高后降低,在690℃时达到最大,这和图5断后伸长率表征结果趋势一致,说明当退火温度在Ac1以上时,残留奥氏体中碳含量是影响塑性的主要因素。

3残留奥氏体增塑效应分析

残留奥氏体在Q&P钢中至关重要,其体积分数、化学成分、尺寸、形貌、以及位置都是影响残留奥氏体稳定性的因素。残留奥氏体对塑性有3个效应,一个是TRIP效应,另一个是阻碍微裂纹扩展(BMP)效应,最后是残留奥氏体吸收位错(DARA)效应[12]。图8是通过HKLChannel5数据处理软件得到的FCC相和BCC相分布结果。图中灰色和黑色是由于位错密度等缺陷导致的衬度不同所致,其中灰色为铁素体,黑色为位错密度高马氏体,蓝色块状为残留奥氏体,绿色线条代表2°~15°晶界,一般认为是亚晶界,黑色线条为>15°晶界,一般认为晶界。从图中可以看出,随着退火温度的升高,残留奥氏体的比例逐渐增高,到710℃时,达到最大,这是由于随退火温度升高,退火时两相区奥氏体含量逐渐升高,相当一部分被保留在室温成为残留奥氏体。但是由于710℃时,残留奥氏体块较大且分布不均匀,导致残留奥氏体稳定性下降,因此此温度下塑性较差。而690℃时,残留奥氏体尺寸相近且均匀弥散分布于铁素体基体上,由图7可知,此时奥氏体碳含量也相对较高,因此,残留奥氏体也相对稳定,塑性最好。

4结论

1)实验钢在传统C-Si-Mn钢成分基础上,添加适量Nb和Ni,得到了亚微米级别的晶粒尺寸,并且在室温获得了大量稳定存在的残留奥氏体;2)采用两相区Q&P工艺处理,得到了块状铁素体+块状马氏体+残留奥氏体组织。基体为铁素体,随着退火温度增加,残留奥氏体含量逐渐增多,且残留奥氏体晶粒逐渐增大;3)不同退火温度下实验钢表现出不同的力学性能,在690℃退火时,得到最佳的力学性能。其强度为1195MPa,断后伸长率为23.5%,强塑积达到28GPa•%。

作者:苗丹阳 唐荻 赵征志 丁然 单位:北京科技大学冶金工程研究院


    更多人文科学论文详细信息: 退火温度对超细晶钢力学性能的影响
    http://www.400qikan.com/mflunwen/skls/rwkx/114058.html

    相关专题:绥化学院学报 黑龙江中医药杂志


    上一篇:高职软件技术互联网+教育研究
    下一篇:会展政策与法律法规协调机制研究

    认准400期刊网 可信 保障 安全 快速 客户见证 退款保证


    品牌介绍